FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS F/G 12/1
NONPARAMETRIC BAYESIAN ESTIMATION OF THE HORIZONTAL DISTANCE BE-ETC(U)
MAR 80 M HOLLANDER, R KORWAR
FSU-STATISTICS-M537 AFOSR-TR-80-0461 NL AD-A086 203 UNCLASSIFIED Joe J 40-46203 END #8-80 DTIC

INOT ACCIPTION FOR 2'919 17

DD , FORM 1473 ED

for the case when G is uniform.

EDITION OF 1 NOV 65 IS OBSOLETE

Using a result of Korwar and Hollander (1976), the Bayes risk of is evaluated

NONPARAMETRIC BAYESIAN ESTIMATION OF THE PORIZONTAL DISTANCE BETWEEN TWO POPULATIONS

by

Myles Hollander and Ramesh Korwar 2

The Florida State University and University of Massachusetts

FSU Statistics Report M537 AFOSR Technical Report No. 78-104

March, 1980
The Florida State University
Department of Statistics
Tallahassee, Florida 32306

Approved for public release; distribution unlimited.

 $^{^{1}\}mbox{Research}$ supported by the Air Force Office of Scientific Research, AFSC, USAF under Grant AFOSR-78-3678.

²Research supported by the Air Force Office of Scientific Research, AFSC, USAF under Grant F49620-79-C-0105.

ABSTRACT

The horizontal distance $\Lambda(x) = G^{-1}(F(x)) - x$ has been shown by Doksum (1974) to be a useful measure of the difference, at each x, between the populations defined by continuous distribution functions F(x) and G(x). Here we assume that G is known, and we develop a Bayesian nonparametric estimator $\lambda_n(x)$ of $\lambda(x)$ based on a random sample of n X's from F. The estimator λ_n is, for weighted squared-error loss, Bayes with respect to Ferguson's (1973) Dirichlet process prior. Using a result of Korwar and Hollander (1976), the Bayes risk of λ_n is evaluated for the case when G is uniform.

Accession For		
NTIS	GRA&I	
DDC TA	∆B	
Unannounced		
Justification		
Distribution/ Evailed ty Codes		
	Avail and	l/or
Dist.	specia:	l
A		

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTIAL TO EDG
This technique report has been reviewed and is
approved for tables velocited law AFR 190-12 (7b).
Distribution is unlimited.
A. D. BLOSE
Technical Information Officer

1. Introduction.

When F and G are continuous distribution functions, the horizontal distance

$$\Delta(x) = G^{-1}(F(x)) - x, x \text{ real},$$
 (1)

has been shown by Doksum (1974) to be a useful measure of the difference, at each x, between F and G. Under suitable regularity, Doksum shows that $\Delta(x)$ is essentially the only function satisfying

$$X + \Delta(X) \stackrel{d}{=} Y, \qquad (2)$$

where, in (2), X is distributed according to F, Y is distributed according to G, and " $\frac{1}{2}$ " means "has the same distribution as."

When the linear model

$$F(x) = G(x + \Delta), \text{ for all } x,$$
(3)

holds, where Δ is a constant, then $\Delta(x) \equiv \Delta$ (and, of course, when $F \equiv G$, $\Delta(x) \equiv 0$.)

When one observes a random sample of n X's from F and an independent random sample of m Y's from G, Doksum suggests estimating $\Delta(x)$ by

$$\hat{\Delta}_{N}(x) = G_{m}^{-1}(F_{n}(x)) - x,$$
 (4)

where N = m + n and F_n , G_m are the empirical distribution functions based on the X's and Y's, respectively. Doksum also derives a simultaneous confidence band for $\Delta(x)$ and shows that $N^{\frac{1}{2}}\{\hat{\Delta}_{N}(x) - \Delta(x)\}$ converges weakly to a Gaussian process.

In this paper we consider the one-sample problem where G is known and (just) a random sample of n X's from F is available for estimating $\Delta(x)$. One natural estimator for this problem is the one-sample limit $(m + \infty)$ of Doksum's estimator $\hat{\Delta}_N$. This one-sample limit is

$$\hat{\Delta}_{n}(x) = G^{-1}(F_{n}(x)) - x.$$
 (5)

The estimator $\hat{\Delta}_n$ does not utilize prior information about the unknown F. Our approach is Bayesian and leads to an estimator $\hat{\Delta}_n$ which does use prior information about F.

We assume that F is a random distribution function chosen according to Ferguson's (1973) Dirichlet process prior (Definition 2.2) with parameter $\alpha(\cdot)$, a completely specified measure on the real line R with the Borel σ -field B. A defect to this approach is that the randomly chosen F will not be continuous (Ferguson's Dirichlet process prior chooses, with probability one, a discrete distribution) and thus the desirability of estimating $\Delta(x)$ is slightly diminished. Nevertheless, in this case $\Delta(x)$ remains a useful measure of the distance between F and G at x, and the resulting estimator $\lambda_n(x)$ combines sample information and prior information in an effective manner.

Our loss function is

$$L(\hat{\Delta}, \Delta) = \int (\hat{\Delta}(x) - \Delta(x))^2 dW(x), \qquad (6)$$

where $\hat{\Delta}$ is an estimator of Δ and W is a finite measure on (R, B). A general expression for the Bayes estimator $\hat{\Delta}_n$ is given in Section 3, and explicit expressions for $\hat{\Delta}_n$ are obtained for the cases when G is (i) exponential and (ii) uniform. Furthermore, in the uniform case we derive the Payes risk of $\hat{\Delta}_n$. Section 2 contains preliminaries relating to the Dirichlet process.

2. Dirichlet Process Preliminaries.

This section briefly gives some definitions and theorems associated with the Dirichlet process. For further details the reader is referred to Ferguson (1973).

DEFINITION 2.1 (Ferguson). Let Z_1 , ..., Z_k be independent random variables with Z_j having a gamma distribution with shape parameter $\alpha_j \geq 0$ and scale parameter 1, j = 1, ..., k. Let $\alpha_j > 0$ for some j. The *Dirichlet distribution* with parameter $(\alpha_1, \ldots, \alpha_k)$, denoted by $D(\alpha_1, \ldots, \alpha_k)$, is defined as the distribution of (Y_1, \ldots, Y_k) , where $Y_j = Z_j / \sum_{j=1}^{k} Z_j$, j = 1, ..., k.

Since $\sum_{i=1}^{K} Y_i = 1$, the Dirichlet distribution is singular with respect to Lebesgue measure in k-dimensional space. If $\alpha_j = 0$, the corresponding Y_j is degenerate at zero. If however $\alpha_j > 0$ for all j, the (k-1)-dimensional distribution of (Y_1, \ldots, Y_{k-1}) is absolutely continuous with density

$$f(y_{1}, \ldots, y_{k-1} | \alpha_{1}, \ldots, \alpha_{k})$$

$$= \frac{\Gamma(\alpha_{1} + \ldots + \alpha_{k})}{\Gamma(\alpha_{1}) \cdots \Gamma(\alpha_{k})} (\prod_{j=1}^{k-1} y_{j}^{-1}) (1 - \sum_{j=1}^{k-1} y_{j})^{\alpha_{k}-1} I_{S}(y_{1}, \ldots, y_{k-1})$$
where S is the simplex S = {(y_{1}, ..., y_{k-1}): y_{j} \ge 0, \sum_{j=1}^{k-1} y_{j} \le 1}.

DEFINITION 2.2 (Ferguson). Let (X, A) be a measurable space. Let α be a non-null finite measure (nonnegative and finitely additive) on (X, A). We say P is a Dirichlet process on (X, A) with parameter α if for every $k = 1, 2, \ldots$, and measurable partition (B_1, \ldots, B_k) of X, the distribution of $(P(B_1), \ldots, P(B_k))$ is Dirichlet with parameter $(\alpha(B_1), \ldots, \alpha(B_k))$.

DEFINITION 2.3 (Ferguson). The X-valued random variables X_1, \ldots, X_n constitute a sample of size n from a Dirichlet process P on (X, A) with parameter α if for any $m = 1, 2, \ldots$ and measurable sets $A_1, \ldots, A_m, C_1, \ldots, C_n, Q(X_1 \in C_1, \ldots, X_n \in C_n | P(A_1), \ldots, P(A_m), P(C_1), \ldots, P(C_n) \} = \prod_{i=1}^n P(C_i) \text{ a.s.,}$ where Q denotes probability.

THEOREM 2.4 (Ferguson). Let P be a Dirichlet process on (X, A) with parameter α , and let X_1, \ldots, X_n be a sample of size n from P. Then the conditional distribution of P given X_1, \ldots, X_n is a Dirichlet process on (X, A) with parameter $\beta = \alpha + \sum_{i=1}^{n} \delta_{X_i}$, where, for $x \in X$, $A \in A$, $\delta_{X_i}(A) = 1$ if $x \in A$, 0 otherwise.

3. A Bayes Estimator of the Horizontal Distance.

We suppose that F is chosen according to a Dirichlet process prior on (R, B) with parameter α . With the loss function given by (6), the Bayes estimator for the no-sample problem is found by minimizing the right-hand-side of (8),

$$EL(\mathring{\Delta}, \Delta) = \int E(\mathring{\Delta}(x) - \Delta(x))^2 dW(x), \tag{8}$$

where the expectation is with respect to F. The estimator is obtained by minimizing $E(\lambda(x) - \Delta(x))^2$ for each x, yielding

$$\lambda(x) = E(\Delta(x)) = E(G^{-1}F(x)) - x.$$
 (9)

We next evaluate (9) in the cases where (i) G is exponential and (ii) G is uniform.

3.1. The Case Where G is Exponential: Let $G(x) = 1 - \exp(-\lambda x)$, x > 0, and 0 for $x \le 0$, for some $\lambda > 0$. Then

$$G^{-1}(x) = -\lambda^{-1} \ln(1 - x), 0 < x < 1,$$

and (9) reduces to

$$\lambda(x) = \{B(\alpha', \beta')\}^{-1} \int_{0}^{1} [-\lambda^{-1} \ln(1 - y)] y^{\alpha'-1} (1 - y)^{\beta'-1} dy - x., \quad (10)$$

that for each x, F(x) is distributed according to the Beta distribution with parameters $\alpha' = \alpha((-\infty, x])$, $\beta' = \alpha(R) - \alpha'$. (To see this use Definition 2.2 with the measurable partition $B_1 = (-\infty, x]$, $B_2 = R - B_1$.) Thus, for the

'no-sample' problem, by expanding ln(1 - y) in a power series, we obtain

$$\lambda(x) = \{\lambda B(\alpha', \beta')\}^{-1} \int_{0}^{1} \sum_{j=1}^{\infty} j^{-1}y^{\alpha'+j-1}(1-y)^{\beta'-1}dy - x$$

$$= \lambda^{-1} \sum_{j=1}^{\infty} [B(\alpha'+j, \beta')/\{jB(\alpha', \beta')\}] - x.$$

Using Theorem 2.4, the Bayes estimator when a sample \mathbf{X}_1 , ..., \mathbf{X}_n is available from F, is

$$\tilde{\lambda}_{n}(x) = \lambda^{-1} \sum_{j=1}^{\infty} [B(\alpha'' + j, \beta'')/\{jB(\alpha'', \beta'')\}] - x, \qquad (11)$$

where

$$\alpha'' = \alpha((-\infty, x]) + \sum_{i=1}^{n} \delta_{x_i}((-\infty, x]),$$

$$\beta'' = \alpha(R) + n - \alpha''.$$

3.2. The Case Where G is Uniform: Let G(x) = 0 for x < a, (x - a)/(b - a) for $a \le x \le b$, and 1 for x > b, for some a < b. Then (9) reduces to

$$\tilde{\Delta}(x) = \int_{0}^{1} [y(b - a) + a] \{B(\alpha', \beta')\}^{-1} y^{\alpha'-1} (1 - y)^{\beta'-1} dy - x$$

$$= a + (b - a) \{B(\alpha' + 1, \beta')/B(\alpha', \beta')\} - x$$

$$= a + (b - a) \{\alpha'/(\alpha' + \beta')\} - x$$

$$= a + (b - a) F_{0}(x) - x,$$

where

$$F_0(x) = \alpha((-\infty, x])/\alpha(R), x \in R,$$

can be interpreted as the 'prior guess" at F.

Thus, from Theorem 2.4, when a sample $\mathbf{X}_1, \ldots, \mathbf{X}_n$ is available from F, the Bayes estimator is

$$\lambda_n(x) = a + (b - a)F_n(x) - x, x \in R, \qquad (12)$$

where

$$F_n(x) = {\alpha((-\infty, x]) + \sum_{i=1}^n \delta_{x_i}((-\infty, x])}/{\alpha(R) + n}.$$

The minimum Bayes risk $S(\alpha)$ of ${}^{\lambda}_{n}(12)$ can be computed using results of Korwar and Hollander (1976). Korwar and Hollander obtained the minimum Bayes risk $R(\alpha)$ of the estimator ${}^{\lambda}_{n}$ against weighted squared error loss to be

$$R(\alpha) = [\alpha(R)/\{(\alpha(R) + 1)(\alpha(R) + n)\}] \int_{0}^{\infty} F_{0}(x)(1 - F_{0}(x)) dx(x).$$

(See equation (2.19) of Hollander and Korwar (1976) and replace the m of that equation with n here.) It immediately follows that $S(\alpha) = (b - a)^2 R(\alpha)$.

We note that we can also directly obtain the risk $T(\alpha)$ (say) of the one sample limit of Doksum's estimator $\hat{\Delta}_n$ (see equation (5)) with respect to the Dirichlet process prior with parameter α in this case when G is uniform. We find

$$\hat{\Delta}_n(x) = a + (b - a)F_n(x) - x, x \in R,$$

where $F_n(x)$ is the empirical distribution function of the X's. Using (3.3) of Korwar and Hollander (1976) we obtain $T(\alpha) = (b - a)^2 (1 + \alpha(R)/n) R(\alpha)$.

REFERENCES

- [1] Doksum, K. (1974). Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Statist. 2, 267-277.
- [2] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230.
- [3] Korwar, R. M., and Hollander, M. (1976). Empirical Bayes estimation of a distribution function. Ann. Statist. 4, 581-588.

